American Institute of Hydrology AIH Home
AIH Home Newsroom

TM3A19 Levels at Gaging Stations
By Terry A. Kenney

Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft).

An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to equation ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.

TM3A7 Stage Measurement at Gaging Stations
By Vernon B. Sauer and D. Phil Turnipseed

Stream and reservoir stage are critical parameters in the computation of stream discharge and reservoir volume, respectively. In addition, a record of stream stage is useful in the design of structures that may be affected by stream elevation, as well as for the planning for various uses of flood plains. This report describes equipment and methodology for the observation, sensing, and recording of stage in streams and reservoirs. Although the U.S. Geological Survey (USGS) still uses the traditional, basic stilling-well float system as a predominant gaging station, modern electronic stage sensors and water-level recorders are now commonly used. Bubble gages coupled with nonsubmersible pressure transducers eliminate the need for stilling wells. Submersible pressure transducers have become common in use for the measurement of stage in both rivers and lakes. Furthermore, noncontact methods, such as radar, acoustic, and laser methods of sensing water levels, are being developed and tested, and in the case of radar, are commonly used for the measurement of stage. This report describes commonly used gaging-station structures, as well as the design and operation of gaging stations. Almost all of the equipment and instruments described in this report will meet the accuracy standard set by the USGS Office of Surface Water (OSW) for the measurement of stage for most applications, which is ±0.01 foot (ft) or 0.2 percent of the effective stage. Several telemetry systems are used to transmit stage data from the gaging station to the office, although satellite telemetry has become the standard. These telemetry systems provide near real-time stage data, as well as other information that alerts the hydrographer to extreme or abnormal events, and instrument malfunctions.

TM3A8 Discharge Measurements at Gaging Stations
By D. Phil Turnipseed and Vernon B. Sauer

The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3–A22 (Mueller and Wagner, 2009).

Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

TM3A22 Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat
Chapter 22 of Book 3, Section A
By David S. Mueller and Chad R. Wagner

The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field-data collection, and finally to post-processing of the collected data. Acoustic Doppler technology and the instruments currently (2008) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

Download the free Adobe Acrobat Reader to view these files.